Content-Based Image Retrieval Using Associative Memories
نویسنده
چکیده
The rapid growth in the number of large-scale repositories has brought the need for efficient and effective content-based image retrieval (CBIR) systems. The state of the art in the CBIR systems is to search images in database that are “close” to the query image using some similarity measure. The current CBIR systems capture image features that represent properties such as color, texture, and/or shape of the objects in the query image and try to retrieve images from the database with similar features. In this paper, we propose a new architecture for a CBIR system. We try to mimic the human memory. We use generalized bi-directional associative memory (BAMg) to store and retrieve images from the database. We store and retrieve images based on association. We present three topologies of the generalized bi-directional associative memory that are similar to the local area network topologies: the bus, ring, and tree. We have developed software to implement the CBIR system. As an illustration, we have considered three sets of images. The results of our simulation are presented in the paper. Key-Words: Content-based Image Retrieval, Bi-directional Associative Memories, Multi Media Databases
منابع مشابه
Robust image retrieval from noisy inputs using lattice associative memories
Lattice associative memories also known as morphological associative memories are fully connected feedforward neural networks with no hidden layers, whose computation at each node is carried out with lattice algebra operations. These networks are a relatively recent development in the field of associative memories that has proven to be an alternative way to work with sets of pattern pairs for w...
متن کاملHolographic image archive.
This paper presents an associative technique for content-based retrieval into image archive, based on a computing paradigm called Multidimensional Holographic Associative Computing (MHAC). Unlike any prior Artificial Associative Memory (AAM), MHAC has the unique ability fo focus on any subject of pixels in the sample image and retrieve learned images based on the similarity of the visual object...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کامل